Protein electron transfer: Dynamics and statistics.

نویسنده

  • Dmitry V Matyushov
چکیده

Electron transfer between redox proteins participating in energy chains of biology is required to proceed with high energetic efficiency, minimizing losses of redox energy to heat. Within the standard models of electron transfer, this requirement, combined with the need for unidirectional (preferably activationless) transitions, is translated into the need to minimize the reorganization energy of electron transfer. This design program is, however, unrealistic for proteins whose active sites are typically positioned close to the polar and flexible protein-water interface to allow inter-protein electron tunneling. The high flexibility of the interfacial region makes both the hydration water and the surface protein layer act as highly polar solvents. The reorganization energy, as measured by fluctuations, is not minimized, but rather maximized in this region. Natural systems in fact utilize the broad breadth of interfacial electrostatic fluctuations, but in the ways not anticipated by the standard models based on equilibrium thermodynamics. The combination of the broad spectrum of static fluctuations with their dispersive dynamics offers the mechanism of dynamical freezing (ergodicity breaking) of subsets of nuclear modes on the time of reaction/residence of the electron at a redox cofactor. The separation of time-scales of nuclear modes coupled to electron transfer allows dynamical freezing. In particular, the separation between the relaxation time of electro-elastic fluctuations of the interface and the time of conformational transitions of the protein caused by changing redox state results in dynamical freezing of the latter for sufficiently fast electron transfer. The observable consequence of this dynamical freezing is significantly different reorganization energies describing the curvature at the bottom of electron-transfer free energy surfaces (large) and the distance between their minima (Stokes shift, small). The ratio of the two reorganization energies establishes the parameter by which the energetic efficiency of protein electron transfer is increased relative to the standard expectations, thus minimizing losses of energy to heat. Energetically efficient electron transfer occurs in a chain of conformationally quenched cofactors and is characterized by flattened free energy surfaces, reminiscent of the flat and rugged landscape at the stability basin of a folded protein.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protein-water electrostatics and principles of bioenergetics.

Despite its diversity, life universally relies on a simple basic mechanism of energy transfer in its energy chains-hopping electron transport between centers of electron localization on hydrated proteins and redox cofactors. Since many such hops connect the point of energy input with a catalytic site where energy is stored in chemical bonds, the question of energy losses in (nearly activationle...

متن کامل

Activator Generated Electron Transfer Combined Atom Transfer Radical Polymerization (AGET-ATRP) for Controlled Grafting Location of Glycidyl Methacrylate on Regenerated Cellulose Ultrafiltration Membranes

This investigation indicates the ability to selectively graft glycidyl methacrylate (GMA) only from the external surface of regenerated cellulose (RC) ultrafiltration (UF) membranes using activator generated electron transfer (AGET) atom transfer radical polymerization (ATRP). This controlled polymerization resulted in epoxy functionalized polymer brush ends. Further reaction of the terminal ep...

متن کامل

Gated electron transfer as a probe of the configurational dynamics of peptide-protein complexes.

Gated electron-transfer measurements are used to probe the configurational dynamics of complexes formed between small metallopeptides and cytochrome c. The results show that that an apparently subtle chemical alteration of the metallopeptide produces significant changes to the dynamics of the peptide-protein complex.

متن کامل

Cytochrome C on a gold surface: investigating structural relaxations and their role in protein-surface electron transfer by molecular dynamics simulations.

Proteins immobilized on inorganic surfaces are important in technological fields such as biosensors, enzymatic biofuel cells and biomolecular electronics. In these frameworks, it has been demonstrated that some proteins are able to keep their functionality, although the latter may be somewhat modified by the interaction with the surface. Cytochrome C, an heme-based electron transfer protein, ha...

متن کامل

Physical and mechanical features investigation of protein-based biodegradable films obtained from trout fish waste

Biological packaging material based on obtained proteins from fish waste, are biopolymers that have the capability of biodegradable film formation. Thus, purpose of this research is to study and investigate some of films’ physical features made from trout fish Myofibril protein. The film forming solution containing 1.5%, 2% and 2.5%(w/v)Myofibril protein isolate of 100ml solution and glycerol a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 139 2  شماره 

صفحات  -

تاریخ انتشار 2013